4x3+20x2−23x+6=0
Let the roots be a,a,b
∑x=a+a+b=−204=−52a+b=−5⇒b=−5−2a....(i)∑xy=a(a)+a(b)+b(a)=−234a2+2ab=−234
substituting b from (i)
4a2+8ab+23=04a2+8a(−5−2a)+23=04a2−40a−16a2+23=012a2+40a−23=012a2−6a+46a−23=0⇒a=12,−236
substituting a in (i)
⇒b=−6,−83
∑xyz=a2b=−64=−32
Product of roots do not satisfy a=−83
So the roots of the equation are 12,12,−6