p(x)=6x4−13x3−35x2−x−3=0
If one root is 2−√3 then one other root is 2+√3
⇒{x−(2−√3)}{x−2+√3)} is a factor of p(x)
⇒(x−2)2−(√3)2 is a factor of p(x)
⇒x2−4x+1 is a factor of p(x)
Dividing p(x) by x2−4x+1
⇒p(x)=(6x2+11x+3)(x2−4x+1)⇒(6x2+11x+3)(x2−4x+1)=0⇒6x2+11x+3=0⇒6x2+2x+9x+3=0⇒2x(3x+1)+3(3x+1)=0⇒(2x+3)(3x+1)=0⇒x=−32,−13
So the other two roots are −32,−13