Solving Simultaneous Linear Equations by Graphical Method
Solve the equ...
Question
Solve the equations ax+by+cz=0...(1), x+y+z=0...(2), bcx+cay+abz=(b−c)(c−a)(a−b)...(3).
Open in App
Solution
Given equations are ax+by+cz=0...(1), x+y+z=0...(2),
bcx+cay+abz=(b−c)(c−a)(a−b)...(3).
From (1) and (2) by cross multiplication, xb−c=yc−a=za−b=k, suppose ; ∴x=k(b−c),y=k(c−a),z=k(a−b). Substituting in (3), we get k{bc(b−c)+ca(c−a)+ab(a−b)}=(b−c)(c−a)(a−c) k{−(b−c)(c−a)(a−b)}=(b−c)(c−a)(a−b) ∴k=−1; Hence x=c−b,y=a−c,z=b−a.