Given,
ax+by+cz=0→(1)bcx+cay+abz=0→(2)
xyz+abc(a3x+b3y+c3z)=0→(3)
(1)×bc−(2)×a⇒abcx+b2cy+bc2z−abcx−ca2y−a2b2=0
c(b2−a2)y=b(a2−c2)z
(1)×ac−(2)×b⇒a2cx+abcy+ac2z−b2cx−abcy−ab2z=0
c(a2−b2)x=a(b2−c2)z
(1)×ab−(2)×c⇒a2bx+ab2y+abcz−bc2x−ac2y−abcz=0
b(a2−c2)x=a(c2−b2)y
Let c(b2−a2)y=b(a2−c2)z=k
y=kc(b2−a2),z=kb(a2−c2)
Let c(a2−b2)x=a(b2−c2)z=k1
x=k1c(a2−b2),z=k1a(b2−c20
kb(a2−c2)=k1a(b2−c2)
k1=ab(b2−c2a2−c2)k
x=a(c2)kbc(a2−b2)(a2−c2),y=kc(b2−a2),z=kb(a2−c2)
xyz=a(c2−b2)k3[bc(b2−a2)(a2−c2)]2
a3x+b3y+c3z=a2(−by−cz)+b3y+c3z
=−b(a2−b2)y+c(c2−a2)z
kbc−kcb
(3)⇒xyz+abc(a3x+b3y+c3z)=0
a(c2−b2)k3(bc(c2−a2)(a2−b2))2+kab2−kac2=0
a(c2−b2)k[k2(bc(c2−a2)(a2−b2))2−1]=0
∴k=0 or k=±bc(c2−a2)(a2−b2)
∴ solutions are x=0,y=0,z=0 and
x=a(b2−c2),y=b(a2−c2),z=c(a2−b2)
and x=−a(b2−c2),y=−b(a2−c2),z=−c(a2−b2)