wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the equations :
ax+by+cz=0,bcx+cay+abz=0,
xyz+abc(a3x+b3y+c3z)=0.

Open in App
Solution

Given, ax+by+cz=0(1)
bcx+cay+abz=0(2)
xyz+abc(a3x+b3y+c3z)=0(3)
(1)×bc(2)×aabcx+b2cy+bc2zabcxca2ya2b2=0
c(b2a2)y=b(a2c2)z
(1)×ac(2)×ba2cx+abcy+ac2zb2cxabcyab2z=0
c(a2b2)x=a(b2c2)z
(1)×ab(2)×ca2bx+ab2y+abczbc2xac2yabcz=0
b(a2c2)x=a(c2b2)y
Let c(b2a2)y=b(a2c2)z=k
y=kc(b2a2),z=kb(a2c2)
Let c(a2b2)x=a(b2c2)z=k1
x=k1c(a2b2),z=k1a(b2c20
kb(a2c2)=k1a(b2c2)
k1=ab(b2c2a2c2)k
x=a(c2)kbc(a2b2)(a2c2),y=kc(b2a2),z=kb(a2c2)
xyz=a(c2b2)k3[bc(b2a2)(a2c2)]2
a3x+b3y+c3z=a2(bycz)+b3y+c3z
=b(a2b2)y+c(c2a2)z
kbckcb
(3)xyz+abc(a3x+b3y+c3z)=0
a(c2b2)k3(bc(c2a2)(a2b2))2+kab2kac2=0
a(c2b2)k[k2(bc(c2a2)(a2b2))21]=0
k=0 or k=±bc(c2a2)(a2b2)
solutions are x=0,y=0,z=0 and
x=a(b2c2),y=b(a2c2),z=c(a2b2)
and x=a(b2c2),y=b(a2c2),z=c(a2b2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Common Factors
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon