(3x)log3=(4y)log4,4logx=3logy
⇒(log3)(log3x)=(log4)(log4y) and (logx)(log4)=(logy)(log3)
⇒(log3)(log3+logx)=(log4)(log4+logy) and (logx)(log4)=(logy)(log3)
⇒(log3)(log3+p)=(log4)(log4+q) and p(log4)=q(log3) (where p=logx and q=logy)
⇒(log3)(log3+qlog3log4)=(log4)(log4+q) (eliminating p)
⇒(log3)2−(log4)2=(log4)2−(log3)2log4q
⇒q=−log4
⇒logy=log4−1
⇒y=14
Now p(log4)=q(log3)
⇒p(log4)=−(log4)(log3)
⇒p=−(log3)
⇒logx=log3−1
⇒x=13