The correct option is A 13,14
We have,
(3x)log3=(4y)log4 and 4logx=3logy
take log on both sides,
log3(log3+logx)=log4(logy+log4)⇒(1)
[∵logam=mloga&log(ab)=loga+logb]
and
logxlog4=log3logy⇒(2)
Now putting value of logy from (2) in equation (1) we get,
log3(log3+logx)=log4(log4log3logx+log4)
⇒log23(log3+logx)=log24(logx+log3)
⇒(log23−log24)(logx+log3)=0
⇒logx+log3=0⇒logx=−log3=log13⇒x=13
Now using (2), logy=log4log3(−log3)=−log4=log14⇒y=14