We have
2x+3y−3z=03x−3y+z=03x−2y−3z=0
The given system of equations in the matrix form are written as below:
⎡⎢⎣23−33−313−2−3⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣000⎤⎥⎦
AX=0...(1)
where
A=⎡⎢⎣23−33−313−2−3⎤⎥⎦, X=⎡⎢⎣xyz⎤⎥⎦ and 0=⎡⎢⎣000⎤⎥⎦
∴|A|=2(9+2)−3(−9−3)−3(−6+9)=22+36−9=49≠0
Hence, the equations have a unique trivial solution x=0, y=0 and z=0.