The correct option is C x=13,y=1
x−y=12---(1)
x+y=14---(2)
Using formula for cross multiplication method:
x(b1c2−b2c1)=y(c1a2−a1c2)=−1(a1b2−a2b1)
So, from equation (1) and (2) we can write the value of a,b and c.
x−1×14−1×12=y12×1−1×14=−11×1−1×(−1)
x−14−12=y12−14=−11+1
x−26=y−2=−12
x−26=−12
2x=26
x=13
y−2=−12
2y=2
y=1
Therefore, x=13,y=1