x4−2x3−21x2+22x+40=0
Let the roots be a−3d,a−d,a+d,a+3d
S1=a−3d+a−d+a+d+a+3d=−−214a=2a=12S4=(a−3d)(a+3d)(a−d)(a+d)=401(a2−9d2)(a2−d2)=40(14−9d2)(14−d2)=40(1−36d2)(1−4d2)=6401−4d2−36d2+144d4−640=0144d4−40d2−639=0144d4+284d2−324d2−639=0(4d2−9)(36d2+71)=04d2−9=0⇒d=±32
So the roots are −4,−1,2,5