(a) Tn=cot−1(n2+34)=cot−14n2+34
=tan−144(n2+34)=tan−111+(n2−14)
=tan−1(n+12)−(n−12)1+(n+12)(n−12)
tan−1(n+12)−tan−1(n−12)
putting n=1,2,3,....,n and adding
Sn=tan−1(n+12)−tan−112
∴ S∞=π2−tan−112=cot−112=tan−12
(b) Tn=sin−1[1√n√(nn+1)+√(n−1n)1√n+1]
=sin−1[1√n√(1−1n+1)−√(1−1n)1√n+1]
If sinθ=1√n,cosθ=√(1−1n)
If sinϕ=1√n+1,cosϕ=√(1−1n+1)
L.H.S.=sin−1(sinθcosϕ−cosθsinϕ)
=sin−1sin(θ−ϕ)
=θ−ϕ=sin−11√n−sin−11√n+1
Now put n=1,2,3,.... and add.
Sn=sin−11−sin−11√n+1
∴ S∞=sin−11=π2