wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following:
(a) cot1(1+34)+cot1(22+34)+cot1(32+34)+.....
(b) Find the sum of the series
sin1(12)+sin1(216)+...+sin1[nn1{n(n+1)}]+....

Open in App
Solution

(a) Tn=cot1(n2+34)=cot14n2+34
=tan144(n2+34)=tan111+(n214)
=tan1(n+12)(n12)1+(n+12)(n12)
tan1(n+12)tan1(n12)
putting n=1,2,3,....,n and adding
Sn=tan1(n+12)tan112
S=π2tan112=cot112=tan12
(b) Tn=sin1[1n(nn+1)+(n1n)1n+1]
=sin1[1n(11n+1)(11n)1n+1]
If sinθ=1n,cosθ=(11n)
If sinϕ=1n+1,cosϕ=(11n+1)
L.H.S.=sin1(sinθcosϕcosθsinϕ)
=sin1sin(θϕ)
=θϕ=sin11nsin11n+1
Now put n=1,2,3,.... and add.
Sn=sin11sin11n+1
S=sin11=π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon