wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following:
(a) x4+x2+1x2x+1dx= ?
(b) x5x2+1dx= ?

Open in App
Solution

a) Given the integral,
x4+x2+1x2x+1dx=(x2x+1)(x2+x+1)(x2x+1)dx=(x2+x+1)dx=(x2)dx+(x)dx+(1)dx=x33+x22+x+C=2x3+3x2+6x6+C.
b) Given the integral,
x5x2+1dx
Let,
u=x2+1dudx=2xdu=2xdx
and
x2=u1x4=(u1)2
Substituting these values we get,
x5x2+1dx=xx4x2+1dx=12x42xx2+1dx=12(u1)2udu
For,
(u1)2udu=[u22u+1u]du=[u2+1u]du=(u)du(2)du+(1u)du=u222u+ln(u)=(x2+1)222(x2+1)+ln(x2+1)12(u1)2udu=(x2+1)24+ln(x2+1)2(x2+1)
Hence,
x5x2+1dx=(x2+1)24+ln(x2+1)2(x2+1)+C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon