wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

​Solve the following determinant equations:

(i) x+abcax+bcabx+c=0

(ii) x+axxxx+axxxx+a=0, a0

(iii) 3x-83333x-83333x-8=0

(iv) 1xx21aa21bb2=0, ab

(v) x+1352x+2523x+4=0

(vi) 1xx31bb31cc3=0, bc

(vii) 15-2x11-3x7-x111714101613=0

(viii) 11xp+1p+1p+x3x+1x+2=0

(ix) 3-2sin3θ-78cos2θ-11142=0

(x) 4-x4+x4+x4+x4-x4+x4+x4+x4+x=0

Open in App
Solution

(x) Given: 4-x4+x4+x4+x4-x4+x4+x4+x4+x=0



LHS=4-x4+x4+x4+x4-x4+x4+x4+x4+xApplying R2R2-R1 =4-x4+x4+x4+x-4+x4-x-4-x4+x-4-x4+x4+x4+x =4-x4+x4+x2x-2x04+x4+x4+xTaking 2x common from R2 =2x4-x4+x4+x1-104+x4+x4+xApplying R3R3-R1 =2x4-x4+x4+x1-104+x-4+x4+x-4-x4+x-4-x =2x4-x4+x4+x1-102x00Expanding through C3 =2x4+x1×0+1×2x =2x4+x2x =2x24+xThus, 4-x4+x4+x4+x4-x4+x4+x4+x4+x=2x24+xBut it is given that, 4-x4+x4+x4+x4-x4+x4+x4+x4+x=02x24+x=02x2=0 or 4+x=0x=0 or x=-4

Hence, x = 0, −4.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon