Solve the following differential equation.
(x2−y2)dy+2xy.dx=0.
Sol:- To find dy/dx
(x2−y2)dx+2xy.dy=0
2xy.dy=−(x2−y2).dx
2xy.dy=(y2−x2).dx
dy/dx=y2−x22xy …………..(1)
Putting F(x,y)=dy/dx and finding F=(λx,λy)
F(x,y)=y2−x22xy
F(λx,λy)=(λy)2−(λx)22xyλ=λ2.y2−λ2.x2λ2.2xy=λ2(y2−x2)λ2.2xy
F(λx,λy)=y2−x22xy=F(x,y)
∴F(λx,λy)=F(x,y)=λo.F(x.y)
Hence, F(x,y) is a homogenous function of with degree zero.
So, dy/dx is a differentiate equation solving dy/dx by putting y=vx
Put y=vx
Differentiating w.r.t. x
dy/dx=x.dv/dx+v.dx/dx
dy/dx=x.dv/dx+v
Putting value of dy/dx and y=vx in (1)
dydx=y2−x22xy
x.dv/dx+v=(xv)2−x2/2x(xv)
⇒x.dv/dx+v=x2.v2−x2/2x2.v
⇒x.dv/dx=x2.v−x2/2x2.v
x.dv/dx=x2.v2−x2−2.v2.x2/2x2.v
x.dv/dx=−x2.v2−x2/2x2.v
dv/dx=1x(x2(v2−1)2x2v)
dv/dx=1/x.(v2+1/2v)
2v.dvv2+1=−dxx
Integrating both sides
∫2v/v2+1.dv=∫−dx/x
∫2v/v2+1.dv=−log|x|+c ……………..(2)
Putting t=v2+1, differentiating w.r.t. x
d/dv(v2+1)=dt/dv
2v=dt/dv
dv=dt/2v
Now from (2)
∫2v/t2.dt/dv=−log|x|+c
∫dt/t=−log|x|+c
log|t|=−log|x|+c
Putting t=v2+1
log|v2+1|=−log|x|+c
log|v2+1|+log|x|=c
log|x(v2+1)|=c
Putting v=y/x
log|[x((y/x)2+1)]|=c
Putting c=logc
log|y2+x2||x|−logc
y2+x2=cx
x2+y2=cx
Is the general solution of differential equation.