x2(dydx)=y2+2xyRearranging , ⇒(dydx)=y2x2+2xyx2=(yx)2+2(yx) ....(1)
Since the differential equation is of the form dydx=f(y/x)
we can use separation of variables theory
Let y=kx substitute y=kx in the equation ...(i)
⇒dydx=k2+2k ...(2)
and, since y=kx⇒dydx=[k+x(dkdx)] ....(3)
equating (2) & (3)
k2+2k=k+xdkdx⇒xdkdx=k2+k⇒dkk2+k=dxx ...(4)
⇒dkk(k+1)=(Ak+Bk+1)dk=(A(k+2)+B(k)k(kH))dk=(A+Ak+Bkk(kH))dk
⇒A=1,A+B=0 (equating coefficients on LHS & RHS)
⇒A=1,B=−1
⇒∫dkk(k+1)=∫dkk−∫dkk+1=dxx⇒log(k)−log(k+1)=logx+logc
⇒log(kk+1)=log(cx)⇒kk+1=cx⇒[(y)(x)][(yx)+1]=cx
when x=1,y=1⇒1(1+1)=1(c)⇒c=12
⇒y=(y+x)x2