The correct option is D x2−y2=c(y2+x2)4
Given differential eqn can be written as
dydx=x3−3xy2y3−3x2y
which is a homogeneous differential eqn
Put y=vx
dydx=v+xdvdx
So, the eqn becomes
v+xdvdx=1−3v2v3−3v
xdvdx=1−3v2v3−3v−v
v3−3v1−v4dv=dxx
Integrating both sides, we get
∫v31−v4dv−3∫v1−v4dv=∫dxx
Put 1−v4=t in first integral
⇒−4v3dv=dt
Put v2=u in second integral
2vdv=du
−14∫1tdt−32∫11−u2du=∫dxx
−14logt−34log|1+u1−u|=log|x|+logC
−14log|1−v4|−34log|1+v21−v2|=logC|x|
−14log|(1−v4)(1+v2)3(1−v2)3|=logC|x|
⇒(1+v2)4(1−v2)2=1C4x4
⇒C4x4(1+v2)4=(1−v2)2
⇒cx4(1+y2x2)4=(1−y2x2)2
⇒(x2−y2)2=c(x2+y2)4