The correct option is B x2y2=−233(23+lnx)+c
−y+xdydx−xy3(lnx+1)=0⇒xdydx−y=−(x(−lnx−1)y3)⇒−2dydxy3+2xy2=−2(lnx+1)
Let v=1y2⇒dvdx=−2dydxy3
dvdx+2vx=−2(lnx+1)
Let μ=e∫2xdx=x2
x2dvdx+2xv=−2x2(lnx+1)
Substitute 2x=ddx(x2)
x2dvdx+ddx(x2)v=−2x2(lnx+1)
Using gdfdx+fdgdx=ddx(fg)
ddx(x2v)=−2x2(lnx+1)⇒∫ddx(x2v)dx=∫−2x2(lnx+1)dx⇒x2v=−4x39−23x3lnx+c⇒v=−4x9−23xlnx+cx2
Hence ⇒x2y2=−233(23+lnx)+c