wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following differential equation :xdyyxy3(1+lnx)dx=0

A
x2y2=233(23+lnx)+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2y2=233(23+lnx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2y=233(23lnx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x2y=2233(23lnx)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B x2y2=233(23+lnx)+c
y+xdydxxy3(lnx+1)=0xdydxy=(x(lnx1)y3)2dydxy3+2xy2=2(lnx+1)
Let v=1y2dvdx=2dydxy3
dvdx+2vx=2(lnx+1)
Let μ=e2xdx=x2
x2dvdx+2xv=2x2(lnx+1)
Substitute 2x=ddx(x2)
x2dvdx+ddx(x2)v=2x2(lnx+1)
Using gdfdx+fdgdx=ddx(fg)
ddx(x2v)=2x2(lnx+1)ddx(x2v)dx=2x2(lnx+1)dxx2v=4x3923x3lnx+cv=4x923xlnx+cx2
Hence x2y2=233(23+lnx)+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon