The correct option is A 2x×lny=ln2y+c
ylny+dydx(x−lny)=0 ...(1)
Let R(x,y)=ylny and S(x,y)=x−lny
This is not an exact equation, because dR(x,y)dx=lny+1≠1=dS(x,y)dx
Find an integrating factor μ such that
μR(x,y)+μdydxS(x,y)=0 is exact
This means ddy(μR(x,y))=ddy(μS(x,y))
ylnydμdy+μ+lnyμ=μ
Isolate μ to the left hand side
dμdyμ=−1y⇒lnμ=−lny⇒μ=1y
Multiply both side of (1)
lny+(x−lny)dydxy=0
Let P(x,y)=lny and Q(x,y)=x−lnyy
This is exact equation, because dP(x,y)dy=1y=dQ(x,y)dx
Define f(x,y) such that df(x,y)dx=P(x,y) and df(x,y)dy=Q(x,y)
Then, the solution will be given by f(x,y)=c
Integrate df(x,y)dx w.r.t x
f(x,y)=∫lnydx=xlny+g(y) where g(y) is arbitrary function of y
Differentiating f(x,y) w.r.t y
df(x,y)dy=ddy(xlny+g(y))=xy+dg(y)dy
Substituting this in df(x,y)dy=Q(x,y)
xy+dg(y)dy=x−lnyy⇒dg(y)dy=lnyy⇒g(y)=−12ln2y
Hence
−12ln2y+xlny=c