The correct option is A x=cyexy
(y−xy2)dx−(x+x2y)dy=0
Substituting y=v−1x⇒dydx=dvdxx−v−1x2
(y−x(v−1x)2)−(x+x2(v−1x))⎛⎜
⎜
⎜⎝dvdxx−v−1x2⎞⎟
⎟
⎟⎠=0⇒(−(xdvdx)+2)v−2x=0⇒dvdx=2(v−1)xv=2(−1v+1)x⇒dvdx−1v+1=2x
Integrating both sides w.r.t x, we get
∫dvdx−1v+1dx=∫2xdx⇒log(v−1)+v=2logx+c⇒log(xy)+xy+1=2logx+c⇒x=cyexy