wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following differential equations:
cos2 xdydx+y=tanx

Open in App
Solution

dydxytanx=y2secx
1y2dydxtanxy=secx
Let z=1y
dzdx=1y2dydx
dzdx=1y2dydx
dzdxztanx=secx
dzdx+ztanx=secx
Integrating factor (I.F)= ef(x)dx=etanxdx
=elogsecx=secx
Z(I.F)=Q(x).(I.F)dx+c
zsecx=secx.secxdx+c
zsecx=sec2xdx+c
zsecx=tanx+c
1ysecx=tanx+c
y=secxtanx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon