wiz-icon
MyQuestionIcon
MyQuestionIcon
15
You visited us 15 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following differential equations:
(i) xydydx=1+x+y+xy

(ii) y1-x2dydx=x1+y2
(iii) yexydx=xexy+y2dy, y0
(iv) 1+y2tan-1xdx+2y1+x2dy=0

Open in App
Solution

(i) We have, xydydx=1+x+y+xyxydydx=1+x1+yy1+ydy=1+xxdxIntegrating both sides, we get y1+ydy=1+xxdx1+y-11+ydy=1+xxdxdy-11+ydy=1xdx+dxy-log 1+y= log x+x+Cy= log x+log 1+y+x+Cy=log x1+y+x+C Hence, y=log x1+y+x+C is the required solution.

(ii) We have,y1-x2dydx=x1+y2y1+y2dy=x1-x2dxIntegrating both sides ,y1+y2dy=x1-x2dxSubstituting 1+y2=t and 1-x2=u 2ydy=dt and -2x dx=du121tdt=-121udu12log t =-12log u+log C12log 1+y2=-12log 1-x2+log C12log 1+y2+log 1-x2=log Clog 1+y21-x2=2 log C 1+y21-x2=C2 1+y21-x2=C1 , where C1=C2Hence,1+y21-x2=C1 is the required solution.

(iii)

yexydx=xexy+y2dyyexydx=xexydy+y2dyyexydx-xexydy=y2dyydx-xdyexy=y2dyydx-xdyy2exy=dyexydxy=dyexydxy=dyexy=y+C
(iv)
1+y2tan-1xdx+2y1+x2dy=01+y2tan-1xdx=-2y1+x2dytan-1x1+x2dx=-2y1+y2dytan-1x1+x2dx=-2y1+y2dytan-1x22=-log1+y2+Ctan-1x22+log1+y2=C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon