The correct option is A ln(x2+y2)=2tan−1(yx)+c
xdx+ydy=xdy−ydx⇒ydydx+x=xdydx−y
Substituting y=xv⇒dydx=v+xdvdx
x+x(xdvdx+v)v=x(xdvdx+v)−xv⇒x+x(xdvdx+v)v=x2dvdx⇒dvdx=−v2−1x(v−1)⇒dvdx(v−1)−v2−1=1x
Integrating both sides w.r.t x, we get
∫dvdx(v−1)−v2−1dx=∫1xdx⇒tan−1v−12log(v2+1)=logx+ctan−1yx−12log((yx)2+1)=logx+c