wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation:
32cosx4sinxcos2x+sin2x=0

Open in App
Solution

32cosx4sinxcos2x+sin2x=0

32cosx4sinx(12sin2x)+2sinxcosx=0

22cosx4sinx+2sin2x+2sinxcosx=0

2sin2x4sinx+2+2sinxcosx2cosx=0

2(sinx1)2+2cosx(sinx1)=0

2(sinx1)[(sinx1)+cosx]=0

(sinx1)[sinx+cosx1]=0

(sinx1)×2[12sinx+12cosx12]=0

(sinx1)[sinπ4sinx+cosπ4cosx12]=0

(sinx1)[cos(xπ4)12]=0

(sinx1)=0 or [cos(xπ4)12]=0

sinx=1 or cos(xπ4)=12

sinx=sinπ2 or cos(xπ4)=cosπ4

We know the general solution of sinx=sinα is x=nπ+(1)na,nZ

We know the general solution of cos x=cosα is x=2mπ±α,mZ

So, x=nπ+(1)nπ2,nZ and (xπ4)=2mπ±π4Z

Taking positive sign, we get
xπ4=2mπ+π4,mZ

x=2mπ+π2,mZ

Taking negative sign, we get
xπ4=2mππ4,mZ

x=2mπ,mZ

Hence, the general solution is
x=nπ+(1)nπ2,x=2mπ and x=2mπ+π2,n,mZ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon