The correct option is B x=1,−1,2±√133
3(x2+1x2)−4(x−1x)−6=0
Let (x−1x)=m
then (x−1x)2=m2
x2+1x2−2=m2
x2+1x2=m2+2
Hence, reframing the equation,
3(m2+2)−4m−6=0
3m2−4m=0
m=0,43
Now, when m = 0, x−1x=0
x2−1=0 or x=±1
Now, when m=43, x−1x=43
3x2−3=4x
3x2−4x−3=0
x=4±√526 = 2±√133