3x2−2y2+5z2=07x2−3y2−15z2=0
Applying cross multiplication
x230+15=−y2−45−35=z2−9+14=kx29=y216=z21=k⇒x2=9k,y2=16k,x2=k⇒x=±3√k,y=±4√k,z=±√k5x−4y+7z=6
substituting x,y and z
⇒±6√k=6⇒k=1⇒x=±3,y=±4,z=±1