wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation cos(tan1x)=sin(cot134)

Open in App
Solution

cos(tan1x)=sin(cot134)letθ1=tan1x&θ2=cot134x=tanθ,&34=cotθ2sinθ1cosθ1=x&cosθ2sinθ2=34sin2θ1cos2θ1=x2&cos2θ2sin2θ2=9161cos2θ1cos2θ1=x2&1sin2θ2sin2θ2=916cosθ1=11+x2&sinθ2=45θ1=cos111+x2&θ2=sin145cos(cos111+x2)=sin(sin145)11+x2=45(coscos1θ=θ&sinsin1θ=θ)x2+1=2516x=34

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon