wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation.
bxy+b+ayx+a=a+b2,xa+yb=2.

Open in App
Solution

From the second equation, we get
xa1=1yb or xaa=byb=k, say
Then x=a(1+k) and y=b(1k) (1)
Substituting these values of x and y in first equation, we have
ab(1+k)b(2k)+ab(1k)a(2+k)=a+b2
or a(1+k)2k+b(1k)2+k=a+b2
or [a(1+k)2ka2]+[b(1k)2+kb2]=0
or 3ak2k3bk2+k=0
or k[a(2+k)b(2k)(2k)(2+k)]=0
or k[(a+b)k2(ba)=0
k=0 or k=2(ba)b+a
Substituting these values of k in (1), we get
x=a(1+0)=a and y=b(10)=b
or x=a{1+2(ba)b+a}=a(3ba)a+b
and y=b{12(ba)b+a}=b(3ab)a+b
Hence the solutions are
x=a,y=b or x=a(3ba)a+b, y=b(3ab)a+b.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon