Consider the given equation.
x2+12x+203x−5=x2+8x+122x+3
x2+10x+2x+203x−5=x2+6x+2x+122x+3
x(x+10)+2(x+10)3x−5=x(x+6)+2(x+6)2x+3
(x+10)(x+2)(3x−5)=(x+6)(x+2)(2x+3)
(x+10)(3x−5)=(x+6)(2x+3)
(x+10)(2x+3)=(x+6)(3x−5)
2x2+3x+20x+30=3x2−5x+18x−30
2x2+23x+30=3x2+13x−30
x2−10x−60=0
x=10±√100−4×1×−602
x=10±√100+2402
x=10±√3402
x=10±2√852
x=5±√85
Hence, the value of x is 5±√85.