wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation:
2cos2x1=sin3x.

Open in App
Solution

2(1sin2x)1=3sinx4sin3x
22sin2x13sinx+4sin3x=0
Let, sinx=z.
4z32z23z+1=0
(z1)(4z2+2z1)=0
So, z=1,sinx=1,x=2nπ+π2.
and 4z2+2z1=0,z=2±4+168=1±54.
Let, a=1+54,b=154.
So, x=nπ±(1)nsin1(a) and x=nπ±(1)nsin1(b).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon