2log3(x−3x−7)+1=log3(x−3x−1)⇒log3(x−3x−7)2+log33=log3(x−3x−1)⇒3(x−3)2(x−7)2=x−3x−1⇒3x−9(x−7)2=1x−1,x≠33x2−12x+9=x2−14x+49⇒2x2+2x−40=0⇒x2+x−20=0⇒x=−5,4.Atx=4,x−3x−7=1−3<0Therefore,x=−5isonlysolution.