⇒t+3=5√t+9
Lets do squaring on both sides,
⇒t2+9+6t−25t−225=0
⇒t2−19t−216=0
Lets compare with at2+bt+c=0,
a=1,b=−19 and c=−216
⇒ The roots of ax2+bx+c=0 are,
t=−b±√b2−4ac2a
Case1:
Lets take, t=19+152
⇒x=−3+124, x=−3−124
Lets take t=19−152
⇒2x2+3x−2=0
⇒2x(x+2)−(x+2)=0
⇒x=−2, x=12
Therefore, x=94,−154,−2,12