wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation:
sin2x(1+tanx)=3sinx(cosxsinx)3

Open in App
Solution

sin2x(1+tanx)=3sinx(cosxsinx)3
sinx=0,x=nπ.
and,
sinx(cosx+sinx)=9cosx(cosxsinx)
sinxcosx+sin2x=9cos2x9sinxcosx
sin2x+10sinxcosx9cos2x=0
tan2x+10tanx9=0
tanx=10±102+362=10±1362=10±(34)×22
tanx=5±36
Let 5+36=a,536=b

So, x=nπ+tan1a and x=nπ+tan1b

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon