4(sin2x+cos2x)2−8sin2xcos2x=3−(4cos32x+3cos2x)4−2(1−cos22x)=3−4cos32x+3cos2x
Let cos2x=z.
4−2+2z2=3−4z3+3z
4z3+2z2−3z−1=0
(z+1)(4z2−2z−1)=0
Either. z+1=0,z=−1,cos2x=−1,[by placing the value of z=cos 2x]2x=(2n+1)π,x=(2n+1)π2.
or, 4z2−2z−1=0,z=2±√4+168=1±√54.
Let a=1−√54 and b=1+√54.
So, cos2x=a,2x=2nπ+cos−1(a),x=nπ±12cos−1(a).
and,cos2x=b,2x=2nπ+cos−1(b),x=nπ±12cos−1(b).