wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation:
sin4x+cos4x=3cos6x4

Open in App
Solution

4(sin2x+cos2x)28sin2xcos2x=3(4cos32x+3cos2x)
42(1cos22x)=34cos32x+3cos2x
Let cos2x=z.
42+2z2=34z3+3z
4z3+2z23z1=0
(z+1)(4z22z1)=0
Either. z+1=0,z=1,cos2x=1,[by placing the value of z=cos 2x]2x=(2n+1)π,x=(2n+1)π2.
or, 4z22z1=0,z=2±4+168=1±54.
Let a=154 and b=1+54.
So, cos2x=a,2x=2nπ+cos1(a),x=nπ±12cos1(a).
and,cos2x=b,2x=2nπ+cos1(b),x=nπ±12cos1(b).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon