wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation:
tanx+tan2x+tan3x=0

Open in App
Solution

tanx+tan2x+tan3x=0...(1)
we have tan3x=tan(x+2x)=(tanx+tan2x)(1tanx.tan2x)
tanx+tan2x=tan3xtanx.tan2x.tanx3x
using the above realation equation (1) can written as
tan3xtanx.tan2x.tan3x+tan3x=0
tan3x(2tanx.tan2x)=0
tan3x=0
x=xπ/3;xϵ integers.
and, 2tanx.tan2x=0
tanx.tan2x=2
tanx2tanx1tan2x=x
tan2x=1tan2x
2tan2x=1
tanx=±1/2
x=nπ±tan1(±1/2)

1137948_887981_ans_c113e0b53ba04cf9afdce42b91b7a262.jpg

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon