Solve the following equation for x:
2tan−1(cos x)=tan−1(2cosec x)
Given 2tan−1(cos x)=tan−1(2cosec x)⇒tan−1(2cos x1−cos2x)=tan−1(2cosec x) [∵ 2tan−1x=tan−1(2x1−x2)]⇒tan−1(2cos xsin2x)=tan−1(2sin x)⇒2cos xsin2x=2sin x⇒2cos xsin x=2⇒cot x=1⇒cot x=cotπ4⇒x=π4