The correct option is A {3}
(3x−4)3−(x+1)3(3x−4)3+(x+1)3=61189
Applying Compounding and Dividendo ,we get,
=>(3x−4)3−(x+1)3+(3x+4)3+(x+1)3(3x−4)3−(x+1)3+(3x+4)3+(x+1)3=61+18961−189
=>2(3x−4)3−2(x+1)3=200−128
=12564
=>(3x−4)3(x+1)3=12564
=>(3x−4)3(x+1)3=5343
∴3x−4=5 =>x+1=4
=>x=93 =>x=3
=>x=3
∴x=3