32x+4+1=2×3x+2
⇒32x×34+1=2×3x×32
[∵ am+n=am× an]
⇒32x×81+1=18×3x
⇒(3x)2×81−18×3x+1=0
[∵(am)n=amn]
let 3x=t ⋯(i)
⇒81(t)2−18t+1=0
⇒81(t)2−9t−9t+1=0
⇒9t(9t−1)−1(9t−1)=0
⇒(9t−1)(9t−1)=0
⇒9t−1=0
⇒9t=1
∴ t=19
Now, from equation (i),
3x=19
3x=3−2
On comparing both sides, we get
x=−2