Solve the following equation for x. log(2x+3)(6x2+23x+21)+log(3x+7)(4x2+12x+9)=4 Find the value of −8x
Open in App
Solution
The given equation is log(2x+3)(6x2+23x+21)+log(3x+7)(4x2+12x+9)=4 On rewriting the equation using factorization rules we get
log(2x+3)(2x+3)(3x+7)+log(3x+7)(2x+3)2=4 ⇒log(2x+3)(2x+3)log(2x+3)(3x+7)+2log(3x+7)(2x+3)=4 ⇒1+log(2x+3)(3x+7)+2log(2x+3)(3x+7)=4 Let log(2x+3)(3x+7)=t ∴t+2t=3 ⇒t2−3t+2=0 ∴t=1,2 When t=1 ⇒log(2x+3)(3x+7)=1 ⇒3x+7=2x+3 ⇒∴x=−4 But 2x+3>0 and 3x+7>0 i.e. x>−32and x>−73 Hence no solution for t=1 When t=2 ⇒log(2x+3)(3x+7)=2 ⇒3x+7=(2x+3)2 ⇒4x2+9x+2=0 ∴x=−2and x=−14 ∴x=−14 (x=-2 does not lie in domain) So, the given equation has only one solution x=−14 So, −8x=−8(−14)=2