Solve the following equation for x:
sin−1(1−x)−2sin−1x=π2, then x is equal to
a) 0,12
b) 1,12
c) zero
d) 12
Given
sin−1(1−x)−2sin−1x=π2⇒ −2sin−1x=π2−sin−1(1−x)⇒−2sin−1x=cos−1(1−x) [∵sin−1(1−x)+cos−1(1−x)=π2]
⇒ cos(−2sin−1x)=1−x [multiplying both sides by cosx]
⇒ cos(2sin−1x)=1−x [∵cos(−x)=+cos x]⇒ [1−2sin2(sin−1x)]=1−x [∵ cos2x=1−2sin2x]⇒ 1−2[sin(sin−1x)]2=1−x [∵ sin2x=(sin x)2]⇒ 1−2x2=1−x⇒2x2−x=0
⇒ x(2x−1)=0 ⇒ x=0 or 2x−1=0 ⇒ x=0 or 12
But x=12 does not satisfy the given equation, so x = 0
Hence,the correct option is (c).
Alternate method.
Given, sin−1(1−x)−2sin−1x=π2
Let x=sinθ⇒θ=sin−1x, then
sin−1(1−sin θ)−2θ=π2⇒sin−1(1−sinθ)=π2+2θ⇒ 1−sinθ=sin(π2+2θ)⇒1−sinθ=cos2θ[∵ sin(π2+θ)=cosθ]⇒ 1−sinθ=1−2sin2θ [∵ cos2θ=1−2sin2θ]⇒ 2sin2θ−sinθ=0⇒sinθ(2sinθ−1)=0
Either sinθ or 2sinθ−1=0
⇒ x=0 or2x−1=0 [∴sinθ=x]⇒ x=0 or x=12
But x=12 does not satisfy the given equation. So, x=0
To check your answer
Put x=0 in the given equation,
∴ sin−1(1−0)−2sin−10=π2⇒π2−2×0=π2⇒π2=π2
Put x=12 in the given equation,
∴ sin−1(1−12)−2sin−112=π2⇒sin−212−2sin−112=π2⇒π6−2×π6=π2⇒π−2π6=π2⇒−π6≠π2,so x=12 is not possibile
Note: While solving the trigonometric equation, sometimes it may have same extra roots, so please take careful about it.