Solve the following equation for x:
tan−11−x1+x=12tan−1x,(x>0).
Given,
tan−1(1−x1+x)=12tan−1x or 2tan−1(1−x1+x)=tan−1x⇒tan−1⎡⎣2(1−x1+x)1−(1−x1+x)2⎤⎦=tan−1x [∵ 2tan−1y=tan−1(2y1−y2)]⇒tan−1⎡⎢⎣2(1−x)(1+x)(1+x)2−(1−x)2(1+x)2⎤⎥⎦=tan−1x⇒[2(1−x)(2+x)(1+x)2−(1−x)2]=tan−1x⇒tan−1[2(1−x)212+x2+2x−12−x2+2x]=tan−1x⇒tan−1[2(1−x2)4x]=tan−1x⇒tan−1(2−x22x)=tan−1x⇒1−x22x=x⇒1−x2=2x2⇒1=3x2⇒x2=13⇒x=±1√3
[∵ x>0 given, so we do not take x=−1√3]
⇒ x=1√3