Solve the following equation :
1x−1−1x=1x+3−1x+4
1x−1−1x=1x+3−1x+4⇒ x−(x−1)(x−1)x=(x+4)−(x+3)(x+3)(x+4) =1(x−1)x=1(x+3)(x+4) =(x+3)(x+4)=x(x−1)⇒ x2+4x+3x+12=x2−x⇒ x2+7x−x2+x=−128x=−12x=−128=−32=−112