wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation
tan111+2x+tan114x+1=tan12x2.

Open in App
Solution

tan111+2x+tan114x+1=tan12x2.
[tan1A+tan1B=tan1(A+B1AB)]
tan1⎢ ⎢ ⎢ ⎢11+2x+14x+11(11+2x)(14x+1)⎥ ⎥ ⎥ ⎥=tan12x2
tan1⎢ ⎢ ⎢ ⎢ ⎢4x+1+2x+1(1+2x)(1+4x)(1+2x)(1+4x)1(1+2x)(1+4x)⎥ ⎥ ⎥ ⎥ ⎥tan12x2
tan1(6x+28x2+6x)=tan12x2
3x+14x2+3x=2x2
3x2+x2=8x2+6x
x(3x27x6)=0
x[3x(x3)+(x3)]=0
x(x3)(3x+2)=0
x=0,x=3,x=23

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon