wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equation
tan1x+7x1+tan1x1x=πtan17.

Open in App
Solution

tan1x+7x1+tan1x1x=πtan17.
tan1⎢ ⎢ ⎢ ⎢x+7x1+x1x1(x+7x1)(x1x)⎥ ⎥ ⎥ ⎥=πtan17
tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢x(x+7)+(x1)2x(x1)x(x1)(x+7)(x1)x(x1)⎥ ⎥ ⎥ ⎥ ⎥ ⎥=πtan17
tan1[x2+7x+x22x+1x2xx27x+x+7]=πtan17
tan1(2x2+5x+17x+7)+tan17=π
tan1⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢2x2+5x+17x+7+71(2x2+5x+17x+7)times7⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=π
tan1[2x2+5x+149x+497x+714x235x7]=π
2x244x+5014x242x tanπ
2x244x+50=0
x222x+25=0
x=22±4844×252×1
x=22±862
x=11±46

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon