2a(xy−yx)+4a2=1⟶(I)
4x2+xy2a−y2a2=1⟶(II)
⟹ Equation (I):−
Let yx=p
2a(1p−p)+4a2=1
2a−2ap2+4a2p=p
⟹2ap2+p(−4a2+1)−2a=0
⟹p=−1+4a2±√16a4−8a2+1+16a24a
=−1+4a2±(−1+4a2)4a
=8a24a,−24a
yx=2a,−12a
Putting in equation (II):− y=−x2a
⟹4x2−x×x(2a)2−x24a4=1
⟹x2(4−14a2−14a4)=1
⟹x2(16a4−a2−1)=4a4
y=2ax
4x2+x2a(2ax)−4a2x2a2=1
4x2+x2−4x2−1
x2=1
∴x2=4a416a4−a2−1
x=±2a2√16a4−a2−1
y=x2a
y=−a√16a4−a2−1
Solutions are:-
x=1,y=2a
x=−1,y=−2a
x=−2a2√16a4−a2−1,y=−a√16a4−a2−1
x=2a2√16a4−a2−1,y=−a√16a4−a2−1