(2x−7)(x2−9)(2x+5)=91(2x−7)(x+3)(x−3)(2x+5)=91{(2x−7)(x+3)}{(x−3)(2x+5)}=91(2x2+6x−7x−21)(2x2+5x−6x−15)=91(2x2−x−21)(2x2−x−15)=91
Put 2x2−x=t
(t−21)(t−15)=91t2−15t−21t+315−91=0t2−36t+224=0t2−28t−8t+224=0t(t−28)−8(t−28)=0(t−8)(t−28)=0t=8,282x2−x=82x2−x−8=0.....(i)2x2−x=282x2−x−28=0.......(ii)
Solving (i)
2x2−x−8=0
Using quadratic formula
x=1±√1−4(2)(−8)2(2)=1±√654
Solving (ii)
2x2−x−28=02x2−8x+7x−28=02x(x−4)+7(x−4)=0(2x+7)(x−4)=0x=−72,4
So the values of x are 1+√654,1−√654,−72 and 4