The equations can be rewritten as
2x(y−2)+(y−2)=17−2
or (2x+1)(y−2)=15
Similarly (y−2)(3z+1)=50 and (3z+1)(2x+1)=30
Multiplying (1),(2) and (3), we get
[(2x+1)(y−2)(3z+1)]2=15×50×30
∴(2x+1)(y−2)(3z+1)=±150
Now from (1) and (4),
3z+1=±15015=±10 so that z=3,−113.
From (2) and (4),
2x+1=±15050=±3 or z=1,−2
From (3) and (4),
y−2=±15030=±5 or z=7,−3
Hence the solution sets are
x=1,y=7,z=3 or x=−2,y=−3,z=−113.