Solve the following equations:
3x2+165=16xy,
7xy+3y2=132.
Given equations are 3x2+165=16xy
⇒3x2−16xy=−165 .......(i)
and 7xy+3y2=132
Put y=vx
3x2−16vx2=−165 ........(ii)
7vx2+3v2x2=132 .........(iii)
Dividing (ii) by (iii), we get
3x2−16vx27vx2+3v2x2=−165132⇒3−16v7v+3v2=−54⇒12−64v=−35v−15v2⇒15v2−29v+12=0⇒15v2−20v−9v+12=0⇒5v(3v−4)−3(3v−4)=0⇒(5v−3)(3v−4)=0⇒v=35,43⇒y=3x5,4x3
Substituting y in (i), we have
(i) Put y=3x5
Therefore, 3x2−16x(3x5)=−165
⇒−33x25=−165⇒x2=25⇒x=±5
Thus y=3(±5)5=±3
(ii) Put y=4x3
Therefore, 3x2−16x(4x3)=−165
⇒−55x23=−165⇒x=±3
Thus y=4(±3)3=±4