Solve the following equations:
3x2−5y2=7,
3xy−4y2=2.
Given equations are 3x2−5y2=7 .....(i)
and 3xy−4y2=2
Put y=vx
3x2−5v2x2=7 ......(ii)
3vx2−4v2x2=2 .....(iii)
Dividing (ii) by (iii), we get
3x2−5v2x23vx2−4v2x2=72⇒3−5v23v−4v2=72⇒6−10v2=21v−28v2⇒18v2−21v+6=0⇒6v2−7v+2=0⇒6v2−3v−4v+2=0⇒3v(2v−1)−2(2v−1)=0⇒(3v−2)(2v−1)=0⇒v=23,12⇒y=2x3,x2
Substituting y in (i), we get
3x2−5y2=7
(i) Put y=2x3
Therefore, 3x2−5(2x3)2=7
⇒7x29=7⇒x=±3
Thus y=2(±3)3=±2
(ii) Put y=x2
Therefore, 3x2−5(x2)2=7
⇒7x24=7⇒x=±2
Thus y=±22=±1