Solve the following equations:
3x2+xy+y2=15,
31xy−3x2−5y2=45.
x2+xy+y2=15 ........(i)
31xy−3x2−5y2=45
Put y=vx
Thus 3x2+vx2+v2x2=15 .......(ii)
31vx2−3x2−5v2x2=45 ......(iii)
Dividing (ii) by (iii), we get
3x2+vx2+v2x231vx2−3x2−5v2x2=1545⇒3+v+v231v−3−5v2=13⇒9+3v+3v2=31v−3−5v2⇒8v2−28v+12=0⇒2v2−7v+3=0⇒2v2−6v−v+3=0⇒2v(v−3)−1(v−3)=0⇒(2x−1)(v−3)=0⇒v=12,3⇒y=x2,3x
On substituting y in (i), we get
3x2+xy+y2=15
(i) Put y=x2
Therefore, 3x2+x(x2)+(x2)2=15
⇒15x24=15
⇒x=±2
Thus y=(±2)2=±1
(ii) Put y=3x
Therefore, 3x2+x(3x)+(3x)2=15
⇒15x2=15⇒x=±1
Thus y=3(±1)=±3