wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:
3x2+xy+y2=15,
31xy3x25y2=45.

A
x=±2;y=±1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x=±1;y=±3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x=±2;y=±2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x==±3;y=±4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B x=±1;y=±3
D x=±2;y=±1

x2+xy+y2=15 ........(i)

31xy3x25y2=45

Put y=vx

Thus 3x2+vx2+v2x2=15 .......(ii)

31vx23x25v2x2=45 ......(iii)

Dividing (ii) by (iii), we get
3x2+vx2+v2x231vx23x25v2x2=15453+v+v231v35v2=139+3v+3v2=31v35v28v228v+12=02v27v+3=02v26vv+3=02v(v3)1(v3)=0(2x1)(v3)=0v=12,3y=x2,3x

On substituting y in (i), we get
3x2+xy+y2=15

(i) Put y=x2

Therefore, 3x2+x(x2)+(x2)2=15

15x24=15

x=±2

Thus y=(±2)2=±1

(ii) Put y=3x

Therefore, 3x2+x(3x)+(3x)2=15

15x2=15x=±1

Thus y=3(±1)=±3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Equations using Method of Elimination
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon