Solve the following equations:
4x2+5y=6+20xy−25y2+2x,7x−11y=17
Given equations are 4x2+5y=6+20xy−25y2+2x .......(i)
and 7x−11y=17
⇒7x=17+11y
⇒x=17+11y7
Substituting x in (i), we get
4x2+5y=6+20xy−25y2+2x .......(ii)
⇒4(17+11y7)2+5y=6+20(17+11y7)y−25y2+2(17+11y7)⇒1156+484y2+1469y+245y49=42+340y+220y2−175y2+34+22y7⇒484y2+1741y+1156=7(45y2362y+76)⇒484y2+1741y+1156=315y2+2534y+532⇒169y2−793y+624=0⇒13y2−61y+48=0⇒13y2−13y−48y+48=0⇒13y(y−1)−48(y−1)=0⇒(13y−48)(y−1)=0⇒y=4813,1⇒x=17+11y7
For y=1⇒x=17+117=4
For y=4813⇒x=17+11(4813)7=10713
So, the values of x are 4,10713 and values of y are 1,4813.