Given equation, 4x4−20x3+33x2−20x+4=0
⟹4(x2+x−2)–20(x+x−1)+33=0[dividing byx2]
Substitute x+x−1=y in the above equation
⟹4(y2−2)−20y+33=0⟹4y2−20y+25=0⟹(2y−5)2=0
We have equal roots for y=52
⟹x+x−1=52⟹2x2−5x+2=0⟹(2x−1)(x−2)=0
∴ roots of the given equation are 12,12,2,2